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Abstract—Pyrene-appended calix[4]arenes 6–8 bearing an increasing number (from 2 to 4) of �pyrene amide� residues have been pre-
pared. Their fluorescence behaviour has been investigated to show dependence on the number of pyrene groups. Their behaviour as
fluorophores is also described.
� 2005 Elsevier Ltd. All rights reserved.
The increasing need for molecular sensors has stimu-
lated intensive research in the design of molecular
devices able to signal a specific substrate.1 Fluorescent
sensors offer several distinct advantages such as sensitiv-
ity, selectivity, time response and spatial resolution.1

They consist of a fluorophore linked to a selective iono-
phore and is thus called fluoroionophore. Photo-physi-
cal sensing processes are diverse: photo-induced
electron transfer (PET), photo-induced charge transfer
(PCT), energy transfer and excimer formation.1 Due to
their well-known ionophoric properties, calixarenes2

have been used to create fluoroionophores as lumines-
cent molecular probes.2a Calix[4]arenes have been func-
tionalized at the phenolic OHs by esters, ketones,
carboxylic acids, amides, etc. to reach high recognition
levels.2 Amide group is known to complex cations
through interactions with carbonyl oxygen atoms and
anions through hydrogen bonding with –CONH– acidic
hydrogens.2 N-(1-Pyrenylmethyl) amide or �pyrene-
amide� is a useful fluorophore because it displays well-
defined monomer emission at 370–430 nm and efficient
excimer emission at around 480 nm.3,4 The intensity
ratio of excimer to monomer emission (IE/IM) is sensitive
to conformational changes of the receptors on which
they are attached and the variation of IE/IM values upon
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metal-ion binding is an informative parameter in sensing
systems.5–7 Two pyrene-amide groups form a strong
intramolecular excimer through strong face-to-face p-
stacking interaction.8

As a continuation of our work on luminescent pyrene
amide calix[4]arenes9 we have prepared pyrene-
appended calix[4]arenes 6–8 (Chart 1) bearing an
increasing number (from 2 to 4) of �pyrene amide� resi-
dues. Their fluorescence behaviour has been investigated
to show dependence on the number of pyrene groups
and to develop new fluoroionophores based on
calixarenes.2a

Compound 6 was prepared by reacting 110 with 3 equiv
of ethyl bromoacetate in the presence of 2 equiv of
K2CO3 in refluxing CH3CN for 24 h. Pure 6 was iso-
lated after column chromatography on SiO2 using
AcOEt–hexane (3/1) as eluent.11 The addition of two
–CH2CO2Et groups on 1 was confirmed by the FAB-
MS spectrum and microanalysis of 6. The symmetrical
disposition of the O-alkylating groups and the cone
conformation were deduced from its 1H NMR spec-
trum. Singlets at 4.47 ppm and 4.44 ppm were observed
for ArOCH2CONH– and ArOCH2CO2Et, respectively,
while characteristic AB system of the cone conformation
was found at 4.54 and 3.30 ppm with J = 12.8 Hz for the
ArCH2Ar of the calix[4] unit. A peak at 31.9 ppm in 13C
NMR spectrum also provided concrete evidence for the
cone conformation. In a general manner, 2–8 were fully
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Figure 1. Solid state structure of 7.
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Figure 2. Fluorescence emission spectra of 6–8 (6.0 lM, excitation at
343 nm with 1.5 nm slit widths) in CHCl3–CH3CN (1/3).
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3 R1=R2=R3=R4=CH2CO2Et

4 R1=R2=R3=R4=CH2CO2H

5 R1=R2=R3=R4=CH2COCl

6 R1=R3=CH2CO2Et, R2=R4=X

7 R1=CH2CO2Et, R2=R3=R4=XN
H
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X=

1 R1=R3=H, R2=R4=X

8 R1=R2=R3=R4=X

Chart 1. Cone calixarene derivatives 1–8.
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characterized by 1H NMR, 13C NMR, FAB-MS and
elemental analysis.11

The synthesis of 7 begins by reacting calix[4]arene with
1 equiv of ethyl bromoacetate in the presence of 1 equiv
of K2CO3 in refluxing CH3CN for 24 h. Recrystalliza-
tion of the crude mixture from Et2O gave pure 2, which
was further reacted with 3 equiv of N-(1-pyrenyl-
methyl)chloroacetamide9 in the presence of 5 equiv of
K2CO3 in refluxing CH3CN for 24 h to afford 7 pure
after chromatography on SiO2 with AcOEt–hexane (3/
1) as eluent. Analytical data of 2 and 7 were in agree-
ment with a cone conformation.11 The synthesis of 8
begins by reacting calix[4]arene with 5 equiv of ethyl
bromoacetate in the presence of 3 equiv of K2CO3 in
refluxing CH3CN for 12 h. Recrystallization of the
crude mixture from Et2O–MeOH (10/1) afforded 3,
which was hydrolyzed into 4 with 5 equiv of NaOH in
refluxing H2O–EtOH–THF (5/5/2) for 12 h. Treatment
of 4 with an excess of SOCl2 in dry toluene afforded acyl
chloride 5, which was directly reacted with 4 equiv of 1-
pyrenemethylamine hydrochloride in the presence of
10 equiv of NEt3 in refluxing THF for 2 days. Pure 8
was obtained by recrystallization from Et2O. Both 3
and 8 were observed to be in the cone conformation.
The 13C-d shifts of 2–8 are given in bold in the experi-
mental section to show the cone conformation in agree-
ment with the Mendoza rule.11 Single crystals of 7
suitable for X-ray were obtained by slow evaporation
of MeOH solution. The X-ray crystal structure con-
firmed the cone conformation of 7 as shown in Figure
1.12

The fluorescence emission spectra of 6–8 in CHCl3–
CH3CN (1/3) (6.0 lM, kex = 343 nm) are shown in Fig-
ure 2. The ratio of excimeric to monomeric emission of
the pyrene moieties showed that the more pyrene units,
the greater intensity in the excimer emission at
kem = 472 nm is observed. By contrast, the intensity of
the monomeric emission declines going from 6 to 8.
The ratio of excimer to monomer fluorescence intensity
of 8 is about 5 times and 2 times greater than 6 and 7,
respectively. This is presumably because 8 forms more
stable p–p stacking interactions between two facing pyr-
enes than 6 and 7. The steering of the pyrene units by the
rigid cone conformation of the calix[4] moiety may be
argued to explain this behaviour. Metal ion binding
properties of 6–8 were investigated by monitoring the
fluorescence changes upon the addition of Li+, Na+,
K+, Zn2+, Co2+, Mg2+, Ca2+, Al3+, Cu2+ and Pb2+.
Spectra for 6 are seen in Figure 3 in which the fluores-
cence changes are extremely diverse. Jin et al.13 and
Shinkai and co-workers.14 previously found similar
behaviour with related fluorogenic calix[4]arenes bear-
ing two 1,3-opposite pyrene attached via ester linkages.
We also observed a pronounced blue shift along with an
intensity decrease of the pyrene excimer emission in the
presence of Cu2+ (from 474 to 444 nm). Such a blue-
shift is probably due to a locally excited and partially
overlapped pyrene dimer with a rapid structural relaxa-
tion to the lower energy excimer.15 No substantial emis-
sion changes were observed for 7 and 8 except for Pb2+

and Cu2+. The Pb2+ probably quenched the fluorescence
of 7 and 8 both in the excimer and in the monomer by a
heavy metal ion effect8a,9b,16 and/or a reverse-PET17

from pyrene units due to complexation to carbonyl
groups. Pyrene–Cu2+ complexes involve extensive
charge transfer from Cu2+ d-orbitals to pyrene p*-orbi-
tals18 leading to a complete quenching. This heavy metal
effect does not exist for the other metal ions.
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Figure 3. Fluorescence emission spectra of 6 (6.0 lM, excitation at
343 nm with 1.5 nm slit widths) upon the addition of various cations
(0.01 M, 500 equiv) in CHCl3/CH3CN (1/3).
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In conclusion, we reported the synthesis of three new
luminescent calix[4]arenes 6–8 bearing an increasing
number of N-(1-pyrenylmethyl)acetamide functions.
The ratio of excimeric to monomeric emission of the
pyrene moieties was strongly dependent on the number
of pyrene units attached to the calix unit. Complexa-
tion studies showed that 6 exhibited an interesting
diversity in fluorescence changes depending upon the
added cation. Compounds 7 and 8 were only sensitive
to Pb2+ and Cu2+.

Future work is directed towards: (a) similar studies on
anion complexation and (b) grafting various functional-
ities mixed with N-(1-pyrenylmethyl)acetamide func-
tions to find new selectivities.
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Preparation of 4. Compound 3 (1.00 g, 1.27 mmol), NaOH
(0.250 g, 6.20 mmol), EtOH (10 mL), water (10 mL) and
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solvents the residue was dissolved in AcOEt and the
solution was washed twice with 20% aqueous HCl and
three times with water. The organic layer was dried over
MgSO4 and evaporated to give 4 (0.503 g, 59% yields).
Mp: 170–171 �C. 1H NMR (200 MHz, CDCl3): 6.50–7.12
(m, 12H, ArHm and ArHp), 4.14–4.66 (m, 20H, ArCH2Ar,
–OCH2CO– and –CO2H); 13C NMR (200 MHz, CDCl3):
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